Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO17109 | Artificial Intelligence: Why It Won’t Displace Police Analysts
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO17109 | Artificial Intelligence: Why It Won’t Displace Police Analysts
    Muhammad Faizal Bin Abdul Rahman

    01 June 2017

    download pdf

    Synopsis

    Any concerns over Artificial Intelligence (AI) replacing law enforcement intelligence analysts are presently unfounded. Rather, AI and analysts would share a symbiotic working relationship.

    Commentary

    TECHNO-PESSIMISTS have argued that Artificial Intelligence (AI) technologies will eventually displace many jobs. Martin Ford, author of “Rise of the Robots: Technology and the Threat of a Jobless Future”, opined that jobs that entail computer manipulation of data in routine and predictable ways are vulnerable to automation. For example, the predictive policing system (PredPol) deployed by the Los Angeles Police Department (LAPD) reportedly outperformed experienced LAPD analysts in forecasting crime.

    Such zero-sum fears are not entirely unfounded as advances in Machine Learning suggest that AI can emulate and might even surpass human abilities. To manage the expected loss of jobs, a guiding framework for AI adoption was proposed at the World Economic Forum (WEF) Annual Meeting in January 2017, recommending approaches to determine and ensure that AI augments rather than replaces human workers. In the same vein, the plausible impact of AI on law enforcement jobs should be anticipated.

    AI in Homeland Security

    The mission of law enforcement is set to be more challenging given the confluence of burgeoning centrality of cities, evolving transnational crime and security threats. With the use of ubiquitous police CCTV surveillance to counter urban terrorism, for example, police and homeland security functions are increasingly interwoven and data-driven.

    Hence, law enforcement intelligence analysts would certainly benefit from employing both human and AI insights in the horizon-scanning and analyses of a multitude of strategic and tactical threats. AI technologies have been trailed in predictive policing and video surveillance, and have shown promise. Their strength is the ability to expeditiously process massive volumes of data, detect patterns even if complex and obscure, and emulate the human brain in learning from human inputs and from trial and error.

    However, AI’s ability to self-learn raises the concern that (human) analysts would eventually become obsolete. PredPol, for example, tried to assuage this concern by emphasising that its algorithms do not replace but require analysts’ inputs to perform effectively and adapt to changing needs.

    Bad AI

    The current state of AI is that its learning capacity still needs to be honed; hence its reliability may not be unlimited. It can for example decipher many but not all aspects of criminal/human behaviour. The misbehaving chat-bot “Tay” that learned to spew racist rants demonstrated the potential risks of AI’s limitations in terms of possible unintended consequences.

    Similarly, an underperforming AI could potentially impair intelligence analysis and drive miscalculations in operational strategy and deployment with grave implications on public security. Given the fallibility of AI and that intelligence analysis is too critical a security function to be entrusted totally to it, there should be calculated human oversight of its use.

    This requires law enforcement agencies to retain the tacit knowledge and experience of analysts. According to research cited in the book “Critical Knowledge Transfer” (2014) by Harvard Business School, high-level corporate executives remain doubtful that the deep knowledge and experience of human experts could ever be fully codified into algorithms.

    Furthermore, society may be ambivalent about delegating machines with the responsibility to solve human (crime and security) issues, as exemplified by concerns over racial discrimination and false positives arising from the reported use of an AI technology (Beware) by Chicago Police to generate a “heat-list” of suspects.

    Importance of HUMINT & Manipulation of Big Data

    Subject to the nature of threat, AI’s assessments might not be comprehensive if consumed in isolation. AI might not provide all the answers and analysts would find it necessary to question its assessments in certain situations.

    For the purposes of corroboration and plugging of information gaps, analysts would have to fuse AI’s assessments with information collected from other sources such as human intelligence (HUMINT). Such information might reside outside databases yet appreciable as it could relate to criminal motivation, unreported incidents and firsttime offenders (clean skins); therefore could shape operational strategies. Adversaries may seek to outsmart law enforcement AI technologies to evade detection and arrest by manipulating the data inputs of big data and open-source information. Hence, the analysts’ judgement and intuition could complement AI as bulwarks against intelligent adversaries.

    Transforming the Profession

    Analysts could be drivers rather than passengers of change by being co-developers of AI technologies. A study on “Exploring the Potential for using AI Techniques in Police Report Analysis” by the University of Gothenburg, Sweden highlighted the importance of incorporating analysts’ insights to the iterative process of Machine Learning; to improve AI’s ability to discern complex patterns. The prospects of AI learning everything and replacing analysts could be managed with a framework to re-design analysts’ business processes to focus on two higher-value work-streams.

    First, given the need for human oversight, analysts could double-hat as “algorithmists” who are internal auditors tasked to promote best practices in the application of AI and review its assessments to ensure standards and accuracy.

    Second, analysts could support strategy formulation through qualitative research into the underlying and interrelated factors of threats such as cross-border, demographic, economic and terrain issues which may influence criminal/human behaviour. The insights distilled could enrich AI’s data-driven assessment or develop directions for further analyses by AI. Given finite resources, analysts could support frontline policing by helping to prioritise threats flagged by AI. These tasks would require analysts to foster deeper collaboration with field officers and various stakeholders within security and non-security agencies.

    Ultimately, AI would inevitably transform the intelligence analyst’s profession in law enforcement just as how the patrol car and two-way radio revolutionised policing in the early twentieth century. Given the rapid pace of technological advances, analysts should plan forward for the changes.

    About the Author

    Muhammad Faizal bin Abdul Rahman is a Research Fellow with the Homeland Defence Programme at the Centre of Excellence for National Security (CENS), a unit of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore.

    Categories: RSIS Commentary Series / Country and Region Studies / Global

    Synopsis

    Any concerns over Artificial Intelligence (AI) replacing law enforcement intelligence analysts are presently unfounded. Rather, AI and analysts would share a symbiotic working relationship.

    Commentary

    TECHNO-PESSIMISTS have argued that Artificial Intelligence (AI) technologies will eventually displace many jobs. Martin Ford, author of “Rise of the Robots: Technology and the Threat of a Jobless Future”, opined that jobs that entail computer manipulation of data in routine and predictable ways are vulnerable to automation. For example, the predictive policing system (PredPol) deployed by the Los Angeles Police Department (LAPD) reportedly outperformed experienced LAPD analysts in forecasting crime.

    Such zero-sum fears are not entirely unfounded as advances in Machine Learning suggest that AI can emulate and might even surpass human abilities. To manage the expected loss of jobs, a guiding framework for AI adoption was proposed at the World Economic Forum (WEF) Annual Meeting in January 2017, recommending approaches to determine and ensure that AI augments rather than replaces human workers. In the same vein, the plausible impact of AI on law enforcement jobs should be anticipated.

    AI in Homeland Security

    The mission of law enforcement is set to be more challenging given the confluence of burgeoning centrality of cities, evolving transnational crime and security threats. With the use of ubiquitous police CCTV surveillance to counter urban terrorism, for example, police and homeland security functions are increasingly interwoven and data-driven.

    Hence, law enforcement intelligence analysts would certainly benefit from employing both human and AI insights in the horizon-scanning and analyses of a multitude of strategic and tactical threats. AI technologies have been trailed in predictive policing and video surveillance, and have shown promise. Their strength is the ability to expeditiously process massive volumes of data, detect patterns even if complex and obscure, and emulate the human brain in learning from human inputs and from trial and error.

    However, AI’s ability to self-learn raises the concern that (human) analysts would eventually become obsolete. PredPol, for example, tried to assuage this concern by emphasising that its algorithms do not replace but require analysts’ inputs to perform effectively and adapt to changing needs.

    Bad AI

    The current state of AI is that its learning capacity still needs to be honed; hence its reliability may not be unlimited. It can for example decipher many but not all aspects of criminal/human behaviour. The misbehaving chat-bot “Tay” that learned to spew racist rants demonstrated the potential risks of AI’s limitations in terms of possible unintended consequences.

    Similarly, an underperforming AI could potentially impair intelligence analysis and drive miscalculations in operational strategy and deployment with grave implications on public security. Given the fallibility of AI and that intelligence analysis is too critical a security function to be entrusted totally to it, there should be calculated human oversight of its use.

    This requires law enforcement agencies to retain the tacit knowledge and experience of analysts. According to research cited in the book “Critical Knowledge Transfer” (2014) by Harvard Business School, high-level corporate executives remain doubtful that the deep knowledge and experience of human experts could ever be fully codified into algorithms.

    Furthermore, society may be ambivalent about delegating machines with the responsibility to solve human (crime and security) issues, as exemplified by concerns over racial discrimination and false positives arising from the reported use of an AI technology (Beware) by Chicago Police to generate a “heat-list” of suspects.

    Importance of HUMINT & Manipulation of Big Data

    Subject to the nature of threat, AI’s assessments might not be comprehensive if consumed in isolation. AI might not provide all the answers and analysts would find it necessary to question its assessments in certain situations.

    For the purposes of corroboration and plugging of information gaps, analysts would have to fuse AI’s assessments with information collected from other sources such as human intelligence (HUMINT). Such information might reside outside databases yet appreciable as it could relate to criminal motivation, unreported incidents and firsttime offenders (clean skins); therefore could shape operational strategies. Adversaries may seek to outsmart law enforcement AI technologies to evade detection and arrest by manipulating the data inputs of big data and open-source information. Hence, the analysts’ judgement and intuition could complement AI as bulwarks against intelligent adversaries.

    Transforming the Profession

    Analysts could be drivers rather than passengers of change by being co-developers of AI technologies. A study on “Exploring the Potential for using AI Techniques in Police Report Analysis” by the University of Gothenburg, Sweden highlighted the importance of incorporating analysts’ insights to the iterative process of Machine Learning; to improve AI’s ability to discern complex patterns. The prospects of AI learning everything and replacing analysts could be managed with a framework to re-design analysts’ business processes to focus on two higher-value work-streams.

    First, given the need for human oversight, analysts could double-hat as “algorithmists” who are internal auditors tasked to promote best practices in the application of AI and review its assessments to ensure standards and accuracy.

    Second, analysts could support strategy formulation through qualitative research into the underlying and interrelated factors of threats such as cross-border, demographic, economic and terrain issues which may influence criminal/human behaviour. The insights distilled could enrich AI’s data-driven assessment or develop directions for further analyses by AI. Given finite resources, analysts could support frontline policing by helping to prioritise threats flagged by AI. These tasks would require analysts to foster deeper collaboration with field officers and various stakeholders within security and non-security agencies.

    Ultimately, AI would inevitably transform the intelligence analyst’s profession in law enforcement just as how the patrol car and two-way radio revolutionised policing in the early twentieth century. Given the rapid pace of technological advances, analysts should plan forward for the changes.

    About the Author

    Muhammad Faizal bin Abdul Rahman is a Research Fellow with the Homeland Defence Programme at the Centre of Excellence for National Security (CENS), a unit of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore.

    Categories: RSIS Commentary Series / Country and Region Studies

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info