Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO13013 | Submarine Trends in Asia Pacific: Air-Independent Propulsion A Game Changer?
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO13013 | Submarine Trends in Asia Pacific: Air-Independent Propulsion A Game Changer?
    Michael Raska

    24 January 2013

    download pdf

    Synopsis

    The contending strategic realities of the Asia-Pacific region compel states to adopt innovations of their rivals. This is the case for new classes of conventional submarine designs, which incorporate an array of innovative technologies in order to maximise their survivability and lethality in diverse maritime operations.

    Commentary

    WHILE EUROPE and North America remain key submarine markets, China’s ongoing military modernisation coupled with contending international relations in the Asia-Pacific will increasingly drive submarine procurement in the region over the next decade. In 2011, the total submarine market in Asia-Pacific is estimated at US$4.4 billion, and for the next decade, submarine expenditures are projected to US$46 billion.

    With changing strategic realities, Asian navies aim to become increasingly flexible, and capable of varying mission profiles: from countering traditional coastal defence missions to protecting sea lanes and communication lines. Simultaneously, submarines are increasingly valuable strategic resource for both electronic and signal intelligence. To enhance the varying operational capabilities, increase submerged endurance and stealth, installing viable Air-independent propulsion systems is thus becoming a strategic necessity.

    Advantages of AIP systems

    Designed to enhance the performance of modern conventional (diesel-electric) submarines AIP is a key emerging technology that essentially provides a “closed cycle” operation through a low-power electrical source supplementing the battery, which may extend the submarine’s underwater endurance up to two weeks or more.

    AIP systems close the endurance gap between nuclear and conventional submarines, and mitigate increasing risks of detection caused by advanced anti-submarine warfare technologies – from modern electro-optical systems and surface radars to magnetic sensors, active and passive sonars, and airborne surveillance radars. Advanced AIP technologies thus promise significant operational advantages and tactical flexibility.

    In theory, there are four primary AIP designs currently available: (1) closed-cycle diesel engines; (2) closed-cycle steam turbines; (3) Stirling-cycle heat engines with external combustion, and (4) hydrogen-oxygen fuel cells. Each provides a different solution with particular advantages as well as limitations in relation to performance, safety, and cost factors.

    Since the early years of the Cold War, while major naval powers shifted to nuclear propulsion, smaller navies – particularly in Europe (Germany, Sweden, Spain, Italy and France) continued to develop and rely on conventional diesel-electric submarine fleets, given their lower cost and operational relevance for coastal defence. Traditionally, however, these submarines were highly vulnerable to various types of sensors – acoustic, visual, thermal and air – particularly when running on engines.

    AIP systems in Asian navies

    On the other hand, when running on batteries, these submarines became very quiet and difficult to detect, yet their battery capacity, discharge rate, and indiscretion rate (the ratio of diesel running time to total running time) substantially limited their underwater endurance. To overcome these baseline limitations, naval innovation in propulsion technologies over the past two decades has shifted toward AIP systems.

    There is a variance, however, in the procurement of AIP systems in select Asian navies. For example, the only AIP steam-turbine system currently available is the French “MESMA” (Module d’Energie Sous-Marine Autonome) module, operational on Pakistan Navy’s two Agosta 90-B class submarines.

    Swedish-Kockum designed Stirling AIP technology is installed on Singapore Navy’s two Archer–class submarines, and Japan’s new Soryu-class submarines. The Chinese PLA Navy’s Type 041 Yuan and Type 043 Qing class submarines are also reportedly using Stirling technology. Meanwhile, the Republic of Korea Navy has ordered nine Type 214 submarines with German HDW AIP fuel cell technologies. Three first batch models of the new Son Won-Il class had entered service since 2007, and six second batch models will enter service from 2012.

    Limitations and constraints

    Notwithstanding the diverse AIP technologies, the overall effectiveness of each system will depend on how well it is integrated with other critical systems that ensure optimal submarine functions: power systems, sensors systems, safety systems, navigation systems, command, control, and communication systems, weapons systems, and climate control systems. In this context, any critical failure of an AIP during a combat mission or contested areas will mitigate survivability factors as well as tactical options.

    Indeed, each AIP system design comes with an array of technological limitations, vulnerabilities, and risks, particularly in submerged operations – from the specific acoustic signatures produced by select AIP systems in specific operating regimes, to technical vulnerabilities in storing oxidizer/fuel, as well as their maintenance regime. At the same time, new anti-submarine warfare sensor technologies may provide viable AIP countermeasures.

    Ultimately, AIP-related technological innovation and breakthroughs may not guarantee operational success – strategy, operational concepts, tactical development, leadership, training, and morale will continue to play as important role as emerging technologies and their operational capabilities.

    About the Author

    Michael Raska is a Research Fellow at the Institute of Defence and Strategic Studies, a constituent unit of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University in Singapore.

    Categories: RSIS Commentary Series / International Politics and Security / Maritime Security / Global

    Synopsis

    The contending strategic realities of the Asia-Pacific region compel states to adopt innovations of their rivals. This is the case for new classes of conventional submarine designs, which incorporate an array of innovative technologies in order to maximise their survivability and lethality in diverse maritime operations.

    Commentary

    WHILE EUROPE and North America remain key submarine markets, China’s ongoing military modernisation coupled with contending international relations in the Asia-Pacific will increasingly drive submarine procurement in the region over the next decade. In 2011, the total submarine market in Asia-Pacific is estimated at US$4.4 billion, and for the next decade, submarine expenditures are projected to US$46 billion.

    With changing strategic realities, Asian navies aim to become increasingly flexible, and capable of varying mission profiles: from countering traditional coastal defence missions to protecting sea lanes and communication lines. Simultaneously, submarines are increasingly valuable strategic resource for both electronic and signal intelligence. To enhance the varying operational capabilities, increase submerged endurance and stealth, installing viable Air-independent propulsion systems is thus becoming a strategic necessity.

    Advantages of AIP systems

    Designed to enhance the performance of modern conventional (diesel-electric) submarines AIP is a key emerging technology that essentially provides a “closed cycle” operation through a low-power electrical source supplementing the battery, which may extend the submarine’s underwater endurance up to two weeks or more.

    AIP systems close the endurance gap between nuclear and conventional submarines, and mitigate increasing risks of detection caused by advanced anti-submarine warfare technologies – from modern electro-optical systems and surface radars to magnetic sensors, active and passive sonars, and airborne surveillance radars. Advanced AIP technologies thus promise significant operational advantages and tactical flexibility.

    In theory, there are four primary AIP designs currently available: (1) closed-cycle diesel engines; (2) closed-cycle steam turbines; (3) Stirling-cycle heat engines with external combustion, and (4) hydrogen-oxygen fuel cells. Each provides a different solution with particular advantages as well as limitations in relation to performance, safety, and cost factors.

    Since the early years of the Cold War, while major naval powers shifted to nuclear propulsion, smaller navies – particularly in Europe (Germany, Sweden, Spain, Italy and France) continued to develop and rely on conventional diesel-electric submarine fleets, given their lower cost and operational relevance for coastal defence. Traditionally, however, these submarines were highly vulnerable to various types of sensors – acoustic, visual, thermal and air – particularly when running on engines.

    AIP systems in Asian navies

    On the other hand, when running on batteries, these submarines became very quiet and difficult to detect, yet their battery capacity, discharge rate, and indiscretion rate (the ratio of diesel running time to total running time) substantially limited their underwater endurance. To overcome these baseline limitations, naval innovation in propulsion technologies over the past two decades has shifted toward AIP systems.

    There is a variance, however, in the procurement of AIP systems in select Asian navies. For example, the only AIP steam-turbine system currently available is the French “MESMA” (Module d’Energie Sous-Marine Autonome) module, operational on Pakistan Navy’s two Agosta 90-B class submarines.

    Swedish-Kockum designed Stirling AIP technology is installed on Singapore Navy’s two Archer–class submarines, and Japan’s new Soryu-class submarines. The Chinese PLA Navy’s Type 041 Yuan and Type 043 Qing class submarines are also reportedly using Stirling technology. Meanwhile, the Republic of Korea Navy has ordered nine Type 214 submarines with German HDW AIP fuel cell technologies. Three first batch models of the new Son Won-Il class had entered service since 2007, and six second batch models will enter service from 2012.

    Limitations and constraints

    Notwithstanding the diverse AIP technologies, the overall effectiveness of each system will depend on how well it is integrated with other critical systems that ensure optimal submarine functions: power systems, sensors systems, safety systems, navigation systems, command, control, and communication systems, weapons systems, and climate control systems. In this context, any critical failure of an AIP during a combat mission or contested areas will mitigate survivability factors as well as tactical options.

    Indeed, each AIP system design comes with an array of technological limitations, vulnerabilities, and risks, particularly in submerged operations – from the specific acoustic signatures produced by select AIP systems in specific operating regimes, to technical vulnerabilities in storing oxidizer/fuel, as well as their maintenance regime. At the same time, new anti-submarine warfare sensor technologies may provide viable AIP countermeasures.

    Ultimately, AIP-related technological innovation and breakthroughs may not guarantee operational success – strategy, operational concepts, tactical development, leadership, training, and morale will continue to play as important role as emerging technologies and their operational capabilities.

    About the Author

    Michael Raska is a Research Fellow at the Institute of Defence and Strategic Studies, a constituent unit of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University in Singapore.

    Categories: RSIS Commentary Series / International Politics and Security / Maritime Security

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info