Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO13163 | China’s [Secret] Civil-Military Megaprojects
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO13163 | China’s [Secret] Civil-Military Megaprojects
    Michael Raska

    02 September 2013

    download pdf

    Synopsis

    China’s emerging weapons systems, including recently deployed anti-ship ballistic missiles (DF-21D) and fighter jet prototypes (J-20, J-31), have drawn considerable interest. The country’s future military-technological aspirations are evolving further in select science & technology megaprojects.

    Commentary

    CHINA HAS aimed to overcome deficiencies in areas critical to its national security ever since it initiated the National High Technology Programme (“863”) in March 1986 – the most important civilian-military R&D programme next to the “Two Weapons, and One Satellite” science and technology development plan of 1956-67.

    The 863 Programme featured a concurrent development of dual-use technologies applicable in both civilian and military domains. The programme had initially focused on developing seven strategic priority areas: laser technology, space, biotechnology, information technology, automation and manufacturing technology, energy, and advanced materials. In the mid-1990s, China expanded these areas in size, scope, and importance, shifting its trajectory toward cutting-edge technological products and processes. The 863 Programme is ongoing, funding projects such as the Tianhe-1A supercomputer.

    Three secret national megaprojects

    More importantly, the 863 Programme has paved the way for China’s current “indigenous innovation” strategy, embedded in the 2006 National Medium to Long-term Plan (MLP) for the Development of Science and Technology (2005-2020). The MLP became China’s most ambitious comprehensive national science and technology plan with special long-term total funding estimated at Rmb 500 bn (US$75bn).

    Central to the MLP are 16 National Megaprojects – vanguard S&T programmes – “priorities of priorities” – designed to transform China’s science & technology capabilities in areas such as electronics, semiconductors, telecommunications, aerospace, manufacturing, pharmaceuticals, clean energy, and oil and gas exploration.  The megaprojects include both civilian and military areas, with 13 listed and three “unannounced” areas classified.

    The 16 Megaprojects have been a source of considerable controversy and debates both in China and abroad, given the continuing structural, technological, and manufacturing challenges that inhibit disruptive innovation in Chinese defence science & technology system. The debate has also focused on the three classified megaprojects. Prof. Tai Ming Cheung, leading scholar on China’s defence industries at the Institute on Global Conflict and Cooperation at the University of California San Diego, suggested three prime candidates for the military megaprojects:

    Shenguang Laser Project for Inertial Confinement Fusion:

    The Shenguang (Divine Light) laser project explores the inertial confinement fusion (ICF) as an alternative approach to attain inertial fusion energy (IFE) – a controllable, sustained nuclear fusion reaction aided by an array of high-powered lasers. The lasers essentially heat and compress pellet-sized targets typically containing two hydrogen isotopes deuterium and tritium, sending shock waves into the centre and releasing energy that heats the surrounding fuel, which may also undergo fusion. Shenguang aims to achieve such “burn” – fusion ignition and plasma burning by 2020, while advancing research in solving the complex technological challenges associated with controlling the nuclear reaction.

    Shenguang’s target physics, theory and experimentation, began as early as 1993. By 2012, China completed the Shenguang 3 (Divine Light 3) a high-powered super laser facility based in the Research Centre of Laser Fusion at the China Academy of Engineering Physics – the research and manufacturing centre of China’s nuclear weapons located in Mianyang. In this context, Shenguang has two strategic implications: it may accelerate China’s next-generation thermo-nuclear weapons development, and advance China’s directed-energy laser weapons programs.

    Second Generation Beidou Satellite Navigation System:

    The second prime candidate for China’s ‘unlisted’ megaprojects is likely the Beidou-2 Satellite System (BDS), formerly known as the Compass Navigation Satellite System (CNSS).  According to Jane’s, by the end of 2012, China had 16 operational Beidou satellites in orbit – six geostationary satellites, five Medium Earth Orbit spacecraft, and five satellites in Inclined GeoStationary Orbits covering the Asia-Pacific region. By 2020, Beidou 2 envisions a full-scale system of at least five geostationary and 30 non-geostationary satellites providing a global coverage in two modes: free “open” services available to commercial customers with 10-metre location-tracking accuracy, and restricted “authorised” services providing positioning, velocity and timing communications estimated at 10 centimetre accuracy for the Chinese government and military.

    Beidou 2 satellites, developed by the China Academy of Space Technology, are also designed with effective protection against electromagnetic interference and attack. Notwithstanding its wide commercial utility, the BDS will enable the PLA to significantly enhance its global navigation, tracking, targeting capabilities, providing guidance for military vehicles, ballistic and cruise missiles, precision-guided munitions, as well as unmanned aerial vehicles. Most importantly, the BDS eliminates China’s dependency on the US GPS and Russia’s GLONASS satellite navigation systems that could be deactivated in select areas in times of conflict.

    Hypersonic Vehicle Technology Project:

    While data on China’s hypersonic research remains scarce, there are signs that China is developing conceptual and experimental hypersonic flight vehicle technologies such as hypersonic cruise vehicles (HCV) capable of manoeuvring at Mach 5 speeds (6,150+ km/h), and flying in near-space altitudes. Andrew Erickson, Associate Professor at the US Naval War College, analysed China’s Shenlong (Divine Dragon) spaceplane project, including its apparent test flight in 2011 and noted subsequent profusion of Chinese research articles on the subject.

    Similarly, Mark Stokes from the Project2049 Institute identified new research institutes focusing exclusively on the design and development of hypersonic test flight vehicles, including the 10th Research Institute also known as the Near Space Flight Vehicle Research Institute, under the China Academy of Launch Technology (CALT) – China’s largest entity involved in the development and manufacturing of space launch vehicles and related ballistic missile systems. The Qian Xuesen National Engineering Science Experiment Base in Beijing’s Huairou district is also one of China’s key HCV research centres.

    Global competition

    Taken together, China’s long-term strategic military programmes are deeply embedded in China’s advancing civilian science and technology base, which in turn is increasingly linked to global commercial and scientific networks.

    Technology transfers, foreign R&D investment, and training of Chinese scientists and engineers at research institutes and corporations overseas are part of China’s “indigenous innovation” drive to identify, digest, absorb, and reinvent select technological capabilities, both in civil and military domains.

    In the process, China is benchmarking emerging technologies and similar high-tech defence-related programmes in the U.S., Russia, India, Japan, Israel and other countries. China’s key challenge, however, remains internal – translating its scientific potential and technological advances into operational capabilities.

    About the Author

    Michael Raska is a Research Fellow at the Institute of Defence and Strategic Studies (IDSS), a constituent unit of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University in Singapore.

    Categories: RSIS Commentary Series / International Politics and Security / East Asia and Asia Pacific

    Synopsis

    China’s emerging weapons systems, including recently deployed anti-ship ballistic missiles (DF-21D) and fighter jet prototypes (J-20, J-31), have drawn considerable interest. The country’s future military-technological aspirations are evolving further in select science & technology megaprojects.

    Commentary

    CHINA HAS aimed to overcome deficiencies in areas critical to its national security ever since it initiated the National High Technology Programme (“863”) in March 1986 – the most important civilian-military R&D programme next to the “Two Weapons, and One Satellite” science and technology development plan of 1956-67.

    The 863 Programme featured a concurrent development of dual-use technologies applicable in both civilian and military domains. The programme had initially focused on developing seven strategic priority areas: laser technology, space, biotechnology, information technology, automation and manufacturing technology, energy, and advanced materials. In the mid-1990s, China expanded these areas in size, scope, and importance, shifting its trajectory toward cutting-edge technological products and processes. The 863 Programme is ongoing, funding projects such as the Tianhe-1A supercomputer.

    Three secret national megaprojects

    More importantly, the 863 Programme has paved the way for China’s current “indigenous innovation” strategy, embedded in the 2006 National Medium to Long-term Plan (MLP) for the Development of Science and Technology (2005-2020). The MLP became China’s most ambitious comprehensive national science and technology plan with special long-term total funding estimated at Rmb 500 bn (US$75bn).

    Central to the MLP are 16 National Megaprojects – vanguard S&T programmes – “priorities of priorities” – designed to transform China’s science & technology capabilities in areas such as electronics, semiconductors, telecommunications, aerospace, manufacturing, pharmaceuticals, clean energy, and oil and gas exploration.  The megaprojects include both civilian and military areas, with 13 listed and three “unannounced” areas classified.

    The 16 Megaprojects have been a source of considerable controversy and debates both in China and abroad, given the continuing structural, technological, and manufacturing challenges that inhibit disruptive innovation in Chinese defence science & technology system. The debate has also focused on the three classified megaprojects. Prof. Tai Ming Cheung, leading scholar on China’s defence industries at the Institute on Global Conflict and Cooperation at the University of California San Diego, suggested three prime candidates for the military megaprojects:

    Shenguang Laser Project for Inertial Confinement Fusion:

    The Shenguang (Divine Light) laser project explores the inertial confinement fusion (ICF) as an alternative approach to attain inertial fusion energy (IFE) – a controllable, sustained nuclear fusion reaction aided by an array of high-powered lasers. The lasers essentially heat and compress pellet-sized targets typically containing two hydrogen isotopes deuterium and tritium, sending shock waves into the centre and releasing energy that heats the surrounding fuel, which may also undergo fusion. Shenguang aims to achieve such “burn” – fusion ignition and plasma burning by 2020, while advancing research in solving the complex technological challenges associated with controlling the nuclear reaction.

    Shenguang’s target physics, theory and experimentation, began as early as 1993. By 2012, China completed the Shenguang 3 (Divine Light 3) a high-powered super laser facility based in the Research Centre of Laser Fusion at the China Academy of Engineering Physics – the research and manufacturing centre of China’s nuclear weapons located in Mianyang. In this context, Shenguang has two strategic implications: it may accelerate China’s next-generation thermo-nuclear weapons development, and advance China’s directed-energy laser weapons programs.

    Second Generation Beidou Satellite Navigation System:

    The second prime candidate for China’s ‘unlisted’ megaprojects is likely the Beidou-2 Satellite System (BDS), formerly known as the Compass Navigation Satellite System (CNSS).  According to Jane’s, by the end of 2012, China had 16 operational Beidou satellites in orbit – six geostationary satellites, five Medium Earth Orbit spacecraft, and five satellites in Inclined GeoStationary Orbits covering the Asia-Pacific region. By 2020, Beidou 2 envisions a full-scale system of at least five geostationary and 30 non-geostationary satellites providing a global coverage in two modes: free “open” services available to commercial customers with 10-metre location-tracking accuracy, and restricted “authorised” services providing positioning, velocity and timing communications estimated at 10 centimetre accuracy for the Chinese government and military.

    Beidou 2 satellites, developed by the China Academy of Space Technology, are also designed with effective protection against electromagnetic interference and attack. Notwithstanding its wide commercial utility, the BDS will enable the PLA to significantly enhance its global navigation, tracking, targeting capabilities, providing guidance for military vehicles, ballistic and cruise missiles, precision-guided munitions, as well as unmanned aerial vehicles. Most importantly, the BDS eliminates China’s dependency on the US GPS and Russia’s GLONASS satellite navigation systems that could be deactivated in select areas in times of conflict.

    Hypersonic Vehicle Technology Project:

    While data on China’s hypersonic research remains scarce, there are signs that China is developing conceptual and experimental hypersonic flight vehicle technologies such as hypersonic cruise vehicles (HCV) capable of manoeuvring at Mach 5 speeds (6,150+ km/h), and flying in near-space altitudes. Andrew Erickson, Associate Professor at the US Naval War College, analysed China’s Shenlong (Divine Dragon) spaceplane project, including its apparent test flight in 2011 and noted subsequent profusion of Chinese research articles on the subject.

    Similarly, Mark Stokes from the Project2049 Institute identified new research institutes focusing exclusively on the design and development of hypersonic test flight vehicles, including the 10th Research Institute also known as the Near Space Flight Vehicle Research Institute, under the China Academy of Launch Technology (CALT) – China’s largest entity involved in the development and manufacturing of space launch vehicles and related ballistic missile systems. The Qian Xuesen National Engineering Science Experiment Base in Beijing’s Huairou district is also one of China’s key HCV research centres.

    Global competition

    Taken together, China’s long-term strategic military programmes are deeply embedded in China’s advancing civilian science and technology base, which in turn is increasingly linked to global commercial and scientific networks.

    Technology transfers, foreign R&D investment, and training of Chinese scientists and engineers at research institutes and corporations overseas are part of China’s “indigenous innovation” drive to identify, digest, absorb, and reinvent select technological capabilities, both in civil and military domains.

    In the process, China is benchmarking emerging technologies and similar high-tech defence-related programmes in the U.S., Russia, India, Japan, Israel and other countries. China’s key challenge, however, remains internal – translating its scientific potential and technological advances into operational capabilities.

    About the Author

    Michael Raska is a Research Fellow at the Institute of Defence and Strategic Studies (IDSS), a constituent unit of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University in Singapore.

    Categories: RSIS Commentary Series / International Politics and Security

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info