Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO15279 | Future Landscape of Global Technology
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO15279 | Future Landscape of Global Technology
    Cung Vu

    24 December 2015

    download pdf

    Synopsis

    The technology landscape is not about making predictions regarding certain uses or the degree to which they affect outcomes. It serves as a starting point for leaders to consider assessing the consequences and make intelligent decisions.

    Commentary

    TECHNOLOGY IS moving so quickly, and transforms the way we live and work. In order to maintain the current economic and social status quo, leaders and policy makers must be able to recognise and consider the potential disruptive power of certain technologies. They need to think ahead to answer the “WHO, WHAT, WHY, WHEN, WHERE and HOW” questions.

    In this commentary, I hope to integrate a host of recent science and technology (S&T) forecasts that were published by industry (Cisco), media (CNN), think tanks (RAND, McKinsey) and government (UK MOD, NIC), to provide a consolidated look at S&T domains that are most likely to generate revolutionary change in the future.

    Science and technology forecasts

    • Basic human needs

    Food. Roughly 25% of current farmland is already degraded by over-farming, drought, and air/water pollution. In the future, genetic modified (GM) crop technology will expand to allow desired traits to be transferred to more crops. Automation of equipment for precision agricultures will be used to give higher yields per area.

    Water. Micro-irrigation techniques have been able to deliver water to roots with 90% efficiency. In the future, cheaper subsurface drip-irrigation together with precision agriculture is likely. Many water technologies will be developed to purify, recycle, treatment, etc. New type of membrane will be developed to remove salt from sea water or brackish water.

    Energy. The discovery of new methods for extracting fossil fuels, such as fracking to recover natural gas from shale, means that carbon-based fuels will remain part of the global energy equation for the next several decades. Solar, wind, and hydro-electric are all renewable energy sources that have the potential to provide unlimited power without draining resources or effecting climate change.

    Health. Over the next 30 years, medicine will be completely transformed. Genomics will enable doctors to tailor treatments for diseases such as cancer to an individual’s genetic makeup. Artificial organs will be grown for transplantation using a patient’s own DNA. People will live longer and stay healthy and active well into what today we consider “old age”.

    • Materials, manufacturing and systems

    Materials. Materials science is an important cross-cutting trend for many future technologies. Nanomaterials can lead to new medicines, multi-functional coatings, and more durable composites, among other things. Graphene and carbon nanotubes have the potential to serve as building blocks in novel display types, solar cells and even super-efficient batteries. Nanoparticles could be used for targeted drug treatments for cancer.

    Additive manufacturing. 3D printing or prototype printing or additive printing is a method of building physical objects one layer at a time. A 3D structure can be built by superimposing a 2D layer on top of other 2D layers, hence the term additive printing. This method allows a complex structure to be built otherwise impossible by conventional methods. Since the object or product is built precisely layer-by-layer, there is no waste materials and an idea can go directly from a designed file to final product essentially bypassing many traditional manufacturing steps.

    Autonomous systems. Autonomous systems will likely be a ubiquitous part of everyday life.  Self-driving road vehicles could revolutionize ground transportation, and inexpensive commercial drones and submersibles could have the potential for use in various tasks. Intelligent software agents will automate critical infrastructure such as power plants and perform knowledge work, including routine administrative and research tasks.

    Robotics. Thanks to advancements in several areas including artificial intelligence, sensors, and machine communication, more complex robots are being created with improved intelligence, senses, and dexterity. These advances could result in it being more cost-effective, possibly even more efficient overall, to replace human labor with robots in manufacturing or service settings.

    • Biotechnology and Human augmentation

    Synthetic biology. It has become possible to engineer custom organisms by building new sequences of DNA from scratch, essentially programming life itself. Scientists can now methodically examine how variations in the genetic code generate and affect specific traits and diseases by using computers and rapid sequencing rather than having to resort to trial and error. Relatively cheap sequencing devices could play a potential role in routine tests, and in doing so improve treatments by matching proper ones to patients.

    Human augmentation. Wearable devices could provide context-sensitive information to enhance memory and physical performance. Exoskeletons will provide superhuman strength and endurance. As power of computer keeps increasing and cost decreasing, we could see in the future hospitals can augment patient care with virtual machines.

    • Computing and information technology

    Computing. The cloud is allowing for rapid expansion of Internet-based services,- including media searching, streaming, and offline storing – as well as improvement in Internet-capable mobile devices’ background processing abilities that make things like responding to verbal directives and  even getting directions possible. In the future, smartphones could monitor vital signs and communicate directly with diagnostic applications.

    Big data. Over the next 30 years, our ability to make sense out of massive, dynamic data sets will improve. This will affect almost every sector of the economy, create new industries, and transform our capability to understand and influence the world.

    Social networking. With always-on connectivity, social networking has the power to change cultures as dissemination and consumption of events are moving at almost real-time. More and more people are being connected through social networks and this trend continues to grow as people will find innovative ways to connect together.

    Cyber – Internet of Things. Everyday objects such as home appliances, cars, and infrastructure will be embedded with sensors and connected to the Internet. Social and economic impacts will be felt through more efficient production, optimized logistics, flexible smart grids for utilities and transportation, and countless other applications. Sensors embedded in biological tissues and medical implants will open new opportunities for everything from medical monitoring to tracking biological threats.

    Implications and possibilities

    Science and technology present both challenges and opportunities. While it is impossible to accurately predict the future, the intent behind this analysis is to inform policy and decision makers about where the future might be heading and raise questions about how we might best prepare for a dynamic and uncertain future.

    About the Author

    Cung Vu is a Visiting Senior Fellow of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore. He was an Associate Director of the Office of Naval Research Global and Chief Science and Technology Advisor of the National Maritime Intelligence-Integration Office, US Department of the Navy.

    Categories: RSIS Commentary Series / Country and Region Studies / Non-Traditional Security / Global

    Synopsis

    The technology landscape is not about making predictions regarding certain uses or the degree to which they affect outcomes. It serves as a starting point for leaders to consider assessing the consequences and make intelligent decisions.

    Commentary

    TECHNOLOGY IS moving so quickly, and transforms the way we live and work. In order to maintain the current economic and social status quo, leaders and policy makers must be able to recognise and consider the potential disruptive power of certain technologies. They need to think ahead to answer the “WHO, WHAT, WHY, WHEN, WHERE and HOW” questions.

    In this commentary, I hope to integrate a host of recent science and technology (S&T) forecasts that were published by industry (Cisco), media (CNN), think tanks (RAND, McKinsey) and government (UK MOD, NIC), to provide a consolidated look at S&T domains that are most likely to generate revolutionary change in the future.

    Science and technology forecasts

    • Basic human needs

    Food. Roughly 25% of current farmland is already degraded by over-farming, drought, and air/water pollution. In the future, genetic modified (GM) crop technology will expand to allow desired traits to be transferred to more crops. Automation of equipment for precision agricultures will be used to give higher yields per area.

    Water. Micro-irrigation techniques have been able to deliver water to roots with 90% efficiency. In the future, cheaper subsurface drip-irrigation together with precision agriculture is likely. Many water technologies will be developed to purify, recycle, treatment, etc. New type of membrane will be developed to remove salt from sea water or brackish water.

    Energy. The discovery of new methods for extracting fossil fuels, such as fracking to recover natural gas from shale, means that carbon-based fuels will remain part of the global energy equation for the next several decades. Solar, wind, and hydro-electric are all renewable energy sources that have the potential to provide unlimited power without draining resources or effecting climate change.

    Health. Over the next 30 years, medicine will be completely transformed. Genomics will enable doctors to tailor treatments for diseases such as cancer to an individual’s genetic makeup. Artificial organs will be grown for transplantation using a patient’s own DNA. People will live longer and stay healthy and active well into what today we consider “old age”.

    • Materials, manufacturing and systems

    Materials. Materials science is an important cross-cutting trend for many future technologies. Nanomaterials can lead to new medicines, multi-functional coatings, and more durable composites, among other things. Graphene and carbon nanotubes have the potential to serve as building blocks in novel display types, solar cells and even super-efficient batteries. Nanoparticles could be used for targeted drug treatments for cancer.

    Additive manufacturing. 3D printing or prototype printing or additive printing is a method of building physical objects one layer at a time. A 3D structure can be built by superimposing a 2D layer on top of other 2D layers, hence the term additive printing. This method allows a complex structure to be built otherwise impossible by conventional methods. Since the object or product is built precisely layer-by-layer, there is no waste materials and an idea can go directly from a designed file to final product essentially bypassing many traditional manufacturing steps.

    Autonomous systems. Autonomous systems will likely be a ubiquitous part of everyday life.  Self-driving road vehicles could revolutionize ground transportation, and inexpensive commercial drones and submersibles could have the potential for use in various tasks. Intelligent software agents will automate critical infrastructure such as power plants and perform knowledge work, including routine administrative and research tasks.

    Robotics. Thanks to advancements in several areas including artificial intelligence, sensors, and machine communication, more complex robots are being created with improved intelligence, senses, and dexterity. These advances could result in it being more cost-effective, possibly even more efficient overall, to replace human labor with robots in manufacturing or service settings.

    • Biotechnology and Human augmentation

    Synthetic biology. It has become possible to engineer custom organisms by building new sequences of DNA from scratch, essentially programming life itself. Scientists can now methodically examine how variations in the genetic code generate and affect specific traits and diseases by using computers and rapid sequencing rather than having to resort to trial and error. Relatively cheap sequencing devices could play a potential role in routine tests, and in doing so improve treatments by matching proper ones to patients.

    Human augmentation. Wearable devices could provide context-sensitive information to enhance memory and physical performance. Exoskeletons will provide superhuman strength and endurance. As power of computer keeps increasing and cost decreasing, we could see in the future hospitals can augment patient care with virtual machines.

    • Computing and information technology

    Computing. The cloud is allowing for rapid expansion of Internet-based services,- including media searching, streaming, and offline storing – as well as improvement in Internet-capable mobile devices’ background processing abilities that make things like responding to verbal directives and  even getting directions possible. In the future, smartphones could monitor vital signs and communicate directly with diagnostic applications.

    Big data. Over the next 30 years, our ability to make sense out of massive, dynamic data sets will improve. This will affect almost every sector of the economy, create new industries, and transform our capability to understand and influence the world.

    Social networking. With always-on connectivity, social networking has the power to change cultures as dissemination and consumption of events are moving at almost real-time. More and more people are being connected through social networks and this trend continues to grow as people will find innovative ways to connect together.

    Cyber – Internet of Things. Everyday objects such as home appliances, cars, and infrastructure will be embedded with sensors and connected to the Internet. Social and economic impacts will be felt through more efficient production, optimized logistics, flexible smart grids for utilities and transportation, and countless other applications. Sensors embedded in biological tissues and medical implants will open new opportunities for everything from medical monitoring to tracking biological threats.

    Implications and possibilities

    Science and technology present both challenges and opportunities. While it is impossible to accurately predict the future, the intent behind this analysis is to inform policy and decision makers about where the future might be heading and raise questions about how we might best prepare for a dynamic and uncertain future.

    About the Author

    Cung Vu is a Visiting Senior Fellow of the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore. He was an Associate Director of the Office of Naval Research Global and Chief Science and Technology Advisor of the National Maritime Intelligence-Integration Office, US Department of the Navy.

    Categories: RSIS Commentary Series / Country and Region Studies / Non-Traditional Security

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info