Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO16134 | Robotisation of Militaries: Organisational, Policy and Operational Issues
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO16134 | Robotisation of Militaries: Organisational, Policy and Operational Issues

    02 June 2016

    download pdf

    Synopsis

    Military organisations world over have to grapple with a range of organisational, policy, and operational issues with the expanding role of robotic systems. This is coupled with increased automation of functions and processes in pursuit of military operations.

    Commentary

    POPULAR MEDIA historically has been titled towards portraying ‘robots’ as menacing humanoid machines on a mission to exterminate the human race. In reality, the current robotic systems are more benign—or for that matter sometimes nondescript—ranging from iRobot’s cleaning robot Roomba to iPhone’s personal assistant Siri to drones hunting terrorists and unmanned ground vehicles sniffing IEDs. In fact, robots and the artificial intelligence that runs them have become so ubiquitous that we have lost the ability to detect their presence among us and sustain our normal functioning in their absence.

    Similarly, in case of military applications, robots come in all shapes and sizes—from blimps to buggies to bugs—and gradually acquiring capabilities to undertake missions in all domains of warfare. On this road to robotisation, military organisations have to grapple with a range of organisational, policy, and operational issues, some of which deserve closer attention:

    Organisational and Policy Issues

    First, organisational inertia: Currently men and women across the military rank and file operate high-end unmanned systems such as UAVs. Most of the missions undertaken by these systems are mundane and repetitive in nature predominantly focused on surveillance and reconnaissance. To use highly trained soldiers for these kinds of tasks could increasingly prove to be both operationally and financially unsustainable; therefore, one of the more judicious use of resources might be to recruit and train specialists who specialise in operating these systems.

    Second, procurement procedures: The prevailing development and acquisition producers for legacy platforms involve billions of dollars in investments spread over two to three decades. Rapid technological changes along with the dynamic nature of the geostrategic landscape make many of these systems obsolete and/ or irrelevant to the emerging mission requirements.

    Automated assembly lines with 3-D printing have the potential to fundamentally change the prevailing R&D and acquisition procedures. With rapid prototyping of new systems along with rapid scaling of production, not only the production cycles for legacy systems substantially reduced, but also the production of unmanned systems potentially decentralized.

    Third, democratisation of technology: The dual use nature of the robotic systems and their commercial availability allows relative ease in their acquisition by non-states actors and technologically less advanced states. Many of the civilian and military autonomous systems share the same basic sub-systems and sensors. For example, iRobot’s’ Packbot military robot has its roots in its civilian counterpart. Therefore, the threshold to weaponise an unmanned/ robotic system is very low compared to other dual use technologies such as nuclear or biotechnology.

    Fourth, standardisation and interoperability: Since these systems are only at the initial stages of the evolution, it is prudent for countries to formulate policies for standardisation of equipment not only within the services but also possibly aim at interoperability among allies. This process involves platforms with common sub-systems such as platform, battery, and communication along with modular designs with an ability to change sensors and weapons according to the missions.

    Interoperability of unmanned systems among allies greatly increases mission effectiveness and efficiency. Currently NATO has a standardisation agreement in place for UAVs and considering similar policies for other unmanned systems; therefore, in the near future a US operator using his or her controller, for example, would be able to control a German or British robot.

    From Tactical Generals to Strategic Corporals

    Fifth, Tactical generals vs Joystick commanders vs Strategic corporals: One unintended effect of new technologies could be a new culture of micromanagement by the senior leadership. With C4ISR systems providing near real-time picture of the battlefield along with the ability to pick and choose the targets, there is a danger of generals becoming tacticians. For example, during the Vietnam War, the induction of helicopters—relatively a new technology—created an unintended effect of senior commanders hovering over the battlefield to manage the tactics, transforming into “squad leaders in the sky.”

    A related question is what are the consequences of a young officer who micromanaged or who fought wars through joysticks in virtual reality advances up the ranks to assume operational command. Concomitantly, in the last 10 years infantry squads have gained access to immense air-ground based firepower and real time situational awareness, which at times puts them in situations to take decisions with strategic consequences—the rise of strategic corporals.

    Sixth, manned-unmanned teaming: Other than the dull, dirty, and dangerous tasks, manned-unmanned teaming has the potential to create new possibilities in high-intensity missions. For example, drones are ideal platforms for scouting and targeting, whereas attack helicopters like Apaches are excellent at providing superior firepower at short ranges.

    This manned-unmanned teaming is useful in delegating the “dull”—possibly dangerous—task of scouting and targeting to drones such as Gray Eagle, whereas Apaches can focus all their time on flight for destroying targets, possibly even from a safe standoff distance.

    Robots as Force Multiplier

    Seventh, (re-) emergence of mass: Democratisation and commercialisation of robotic technology enables technologically less advanced states or states with limited resources the means to build and field a “mass” of unmanned systems—asymmetrical strategy to create symmetry in a localised conflict. Under these conditions, conventional deterrence increasingly becomes dynamic and is dependent on the specific geographical area, where mass along with speed of deployment, deception, and terrain plays a critical role.

    Eighth, limitations on power projection: The diffusion of robotic technologies along with advanced C4ISR systems and precision weapons increasingly places limitations on power projection capabilities as well as alter the offense-defense balance. This new dynamic has relatively more impact on the US, which relies on power projection capabilities not only as a critical element in conduct of its foreign policy but also to secure the global commons.

    Over the next 10 years, there is a high probability for robots to emerge as a critical force multiplier, albeit not a game-changer. On this path to robotisation, gradualism is not due to lack of technology but because the need to bring in concomitant changes in organisational, policy, and operational aspects, which are slow to achieve in any large bureaucratic organisation—armed forces are no exception.

    About the Author

    Kalyan M Kemburi is an Associate Research Fellow with the Military Transformations Programme at the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore.

    Categories: RSIS Commentary Series / Conflict and Stability / Country and Region Studies / International Politics and Security / Global

    Synopsis

    Military organisations world over have to grapple with a range of organisational, policy, and operational issues with the expanding role of robotic systems. This is coupled with increased automation of functions and processes in pursuit of military operations.

    Commentary

    POPULAR MEDIA historically has been titled towards portraying ‘robots’ as menacing humanoid machines on a mission to exterminate the human race. In reality, the current robotic systems are more benign—or for that matter sometimes nondescript—ranging from iRobot’s cleaning robot Roomba to iPhone’s personal assistant Siri to drones hunting terrorists and unmanned ground vehicles sniffing IEDs. In fact, robots and the artificial intelligence that runs them have become so ubiquitous that we have lost the ability to detect their presence among us and sustain our normal functioning in their absence.

    Similarly, in case of military applications, robots come in all shapes and sizes—from blimps to buggies to bugs—and gradually acquiring capabilities to undertake missions in all domains of warfare. On this road to robotisation, military organisations have to grapple with a range of organisational, policy, and operational issues, some of which deserve closer attention:

    Organisational and Policy Issues

    First, organisational inertia: Currently men and women across the military rank and file operate high-end unmanned systems such as UAVs. Most of the missions undertaken by these systems are mundane and repetitive in nature predominantly focused on surveillance and reconnaissance. To use highly trained soldiers for these kinds of tasks could increasingly prove to be both operationally and financially unsustainable; therefore, one of the more judicious use of resources might be to recruit and train specialists who specialise in operating these systems.

    Second, procurement procedures: The prevailing development and acquisition producers for legacy platforms involve billions of dollars in investments spread over two to three decades. Rapid technological changes along with the dynamic nature of the geostrategic landscape make many of these systems obsolete and/ or irrelevant to the emerging mission requirements.

    Automated assembly lines with 3-D printing have the potential to fundamentally change the prevailing R&D and acquisition procedures. With rapid prototyping of new systems along with rapid scaling of production, not only the production cycles for legacy systems substantially reduced, but also the production of unmanned systems potentially decentralized.

    Third, democratisation of technology: The dual use nature of the robotic systems and their commercial availability allows relative ease in their acquisition by non-states actors and technologically less advanced states. Many of the civilian and military autonomous systems share the same basic sub-systems and sensors. For example, iRobot’s’ Packbot military robot has its roots in its civilian counterpart. Therefore, the threshold to weaponise an unmanned/ robotic system is very low compared to other dual use technologies such as nuclear or biotechnology.

    Fourth, standardisation and interoperability: Since these systems are only at the initial stages of the evolution, it is prudent for countries to formulate policies for standardisation of equipment not only within the services but also possibly aim at interoperability among allies. This process involves platforms with common sub-systems such as platform, battery, and communication along with modular designs with an ability to change sensors and weapons according to the missions.

    Interoperability of unmanned systems among allies greatly increases mission effectiveness and efficiency. Currently NATO has a standardisation agreement in place for UAVs and considering similar policies for other unmanned systems; therefore, in the near future a US operator using his or her controller, for example, would be able to control a German or British robot.

    From Tactical Generals to Strategic Corporals

    Fifth, Tactical generals vs Joystick commanders vs Strategic corporals: One unintended effect of new technologies could be a new culture of micromanagement by the senior leadership. With C4ISR systems providing near real-time picture of the battlefield along with the ability to pick and choose the targets, there is a danger of generals becoming tacticians. For example, during the Vietnam War, the induction of helicopters—relatively a new technology—created an unintended effect of senior commanders hovering over the battlefield to manage the tactics, transforming into “squad leaders in the sky.”

    A related question is what are the consequences of a young officer who micromanaged or who fought wars through joysticks in virtual reality advances up the ranks to assume operational command. Concomitantly, in the last 10 years infantry squads have gained access to immense air-ground based firepower and real time situational awareness, which at times puts them in situations to take decisions with strategic consequences—the rise of strategic corporals.

    Sixth, manned-unmanned teaming: Other than the dull, dirty, and dangerous tasks, manned-unmanned teaming has the potential to create new possibilities in high-intensity missions. For example, drones are ideal platforms for scouting and targeting, whereas attack helicopters like Apaches are excellent at providing superior firepower at short ranges.

    This manned-unmanned teaming is useful in delegating the “dull”—possibly dangerous—task of scouting and targeting to drones such as Gray Eagle, whereas Apaches can focus all their time on flight for destroying targets, possibly even from a safe standoff distance.

    Robots as Force Multiplier

    Seventh, (re-) emergence of mass: Democratisation and commercialisation of robotic technology enables technologically less advanced states or states with limited resources the means to build and field a “mass” of unmanned systems—asymmetrical strategy to create symmetry in a localised conflict. Under these conditions, conventional deterrence increasingly becomes dynamic and is dependent on the specific geographical area, where mass along with speed of deployment, deception, and terrain plays a critical role.

    Eighth, limitations on power projection: The diffusion of robotic technologies along with advanced C4ISR systems and precision weapons increasingly places limitations on power projection capabilities as well as alter the offense-defense balance. This new dynamic has relatively more impact on the US, which relies on power projection capabilities not only as a critical element in conduct of its foreign policy but also to secure the global commons.

    Over the next 10 years, there is a high probability for robots to emerge as a critical force multiplier, albeit not a game-changer. On this path to robotisation, gradualism is not due to lack of technology but because the need to bring in concomitant changes in organisational, policy, and operational aspects, which are slow to achieve in any large bureaucratic organisation—armed forces are no exception.

    About the Author

    Kalyan M Kemburi is an Associate Research Fellow with the Military Transformations Programme at the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University, Singapore.

    Categories: RSIS Commentary Series / Conflict and Stability / Country and Region Studies / International Politics and Security

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info