Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO17177 | Rice and the Private Sector: Asia’s Food-Energy-Water Nexus
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO17177 | Rice and the Private Sector: Asia’s Food-Energy-Water Nexus
    Stella Liu

    27 September 2017

    download pdf

    Synopsis

    With global food demand and energy needs increasing amid a potential shortfall in water, the interdependencies between these resources – defined as the water-food-energy nexus – have become the resource scarcity challenge of the 21st century. The pressures are especially acute as Asia rapidly develops. The private sector needs to step in.

    Commentary

    AS ASIA develops, global food and energy needs are projected to rise dramatically in the upcoming decades. While these two sectors have normally dealt with their challenges in their individual silos, the shared requirement of water, an increasingly scarce resource, to support their growth has inextricably linked them together.

    The food sector requires water for agriculture and fossil fuel production, a dominant part of the global energy mix, is highly water-intensive. According to the United Nations, the world is anticipated to face a 40% shortfall in water by 2030. As water becomes more scarce, any action in one sector will have an impact in one or both of the sectors.

    Rapid Urbanisation’s Impact on Water

    Asia’s needs for energy, food and water are especially acute as the region rapidly urbanises. Current energy consumption trends suggest that projected energy demand and supply in Asia can almost double by 2030. To feed the projected additional one billion more people in Asia, food production must make gains in productivity.

    For water, an MIT research on economic and population growth and climate change for the next 35 years projected that more than one billion people in Asia may become water-stressed compared to today.

    Efficiency gains in the ‘food’ link of the nexus can influence the outcome of this challenge. Currently, 90% of the world’s total production and consumption of rice is located in Asia. Developing more water and energy efficient agricultural techniques for rice is a key entry point to address the nexus challenge.

    Advances in biotechnology and water-conservation agricultural techniques are promising because they use considerably less energy and water resources required by traditional agriculture.

    However, public sector investment and research in the agricultural sector have been waning in the past few decades and prioritised below development. As the food-energy-water nexus becomes the forefront of the resource scarcity debate, the agriculture sector can no longer be ignored.

    Water for Agriculture

    Rice is the world’s largest irrigated cereal, covering 29% of the total irrigated crop area and almost half of the irrigated cereals area. Research into making rice production more water-efficient yet productive has yielded promising results. IRRI, the International Rice Research Institute, has conducted research into more water conservative agricultural techniques with rice paddies.

    One example is the Alternative Wetting and Drying (AWD) method; Irrigation water is applied a few days after the disappearance of water so the field gets routinely flooded and non-flooded rather than continuously flooded.

    The University of California Davis this year analysed 56 studies on AWD. It discovered that overall, the farms who implemented AWD experienced a small yield reduction of 5.4% with a water usage reduction of 23.4%. The findings highlighted the potential of AWD to reduce water inputs with rice without jeopardising yields.

    Energy for Agriculture

    The energy needs for food production are expected to rise to meet growing food demand in Asia. As agriculture becomes more productive and industrialised, the input needs for fossil fuels increase along the value chain.

    Developing countries use less than half of the energy input for agriculture compared to industrialised countries. To meet growing food demand around the world, agriculture needs to become more ‘energy-smart’ in developing countries, while still making significant gains in productivity.

    Impact assessment studies on biotechnology crops by Brookes and Barfoot demonstrate the potential for these technologies to increase productivity while using minimal energy. Its tracking of different biotech crops from 1996-2014 found that the adoption of biotechnology allowed farmers to increase their yields while using no-till and/or reduced till farming and less herbicides and insecticides use.

    As tractor fuel usage for tilling is reduced, soil quality is enhanced and more carbon remains in the soil. Based on savings arising from the rapid adoption of reduced tillage and no tillage bio-technology crop farming systems in North and South America, an extra 6707 million kg of soil carbon is estimated to have been saved in 2012. This is equivalent to taking 10.9 million cars off the road for one year.

    Way Forward for Asia

    In ASEAN, there have been diminished investments in public sector agricultural research and development over the years as development in other areas took priority. There has been, however, recognition that technological change can no longer be advanced by the public sector alone. Currently half of the agricultural R&D comes from the government in ASEAN and for some countries like Malaysia and Myanmar it’s all of it.

    Figures from the International Food Policy Research Institute (IFPRI) and the Asia Pacific Association of Agricultural Research Institutions (APAARI) demonstrate that agricultural R&D spending has been either stagnating or dropping from 1996 to 2008. Incentivising private sector investment can fill that gap.

    Given the scale and urgency of these challenges, a mix of traditional and innovative private sector incentives is needed. The Asian Development Bank (ADB) 2013 Report on food security provided a few traditional recommendations. Intellectual property rights, trade and foreign investment liberalisation, advance purchase rewards and rewards are a few mechanisms that the public sector can use.

    G20 Recommendation

    For a more innovative approach, the G20 summit in 2010 launched the idea of “pull mechanisms.” Rather than “push” mechanisms that strengthen the supply of research, this type strengthens demand by fostering markets for innovations to “pull” or draw private investors. Since then, AgResults, a US$110 million multilateral initiative, has launched a few pilots and initial results are promising. For instance, in Kenya, post-harvest grain losses in the developing world led to lowered food insecurity rates for smallholder farmers.

    AgResults addressed this by creating a competition to provide economic incentives for companies to design and sell on-farm storage devices for smallholder farmers. Companies that sold the greatest amount of storage capacity received the largest proportion of the prize. In the first year, the companies sold 113,000 on-farm storage devices.

    The competition encouraged companies to compete and create a new market that did not exist before and provided smallholders with a wider range of options. The key to address the nexus challenge in Asia is to focus on future innovative “pull mechanisms” and traditional private sector incentives on more energy and water efficient agri-technologies for rice.

    About the Author

    Stella Liu is a visiting US Fulbright Research Fellow at the Centre for Non-Traditional Security Studies (NTS Centre), S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), Singapore.

    Categories: RSIS Commentary Series / Country and Region Studies / Non-Traditional Security / East Asia and Asia Pacific / South Asia / Southeast Asia and ASEAN
    comments powered by Disqus

    Synopsis

    With global food demand and energy needs increasing amid a potential shortfall in water, the interdependencies between these resources – defined as the water-food-energy nexus – have become the resource scarcity challenge of the 21st century. The pressures are especially acute as Asia rapidly develops. The private sector needs to step in.

    Commentary

    AS ASIA develops, global food and energy needs are projected to rise dramatically in the upcoming decades. While these two sectors have normally dealt with their challenges in their individual silos, the shared requirement of water, an increasingly scarce resource, to support their growth has inextricably linked them together.

    The food sector requires water for agriculture and fossil fuel production, a dominant part of the global energy mix, is highly water-intensive. According to the United Nations, the world is anticipated to face a 40% shortfall in water by 2030. As water becomes more scarce, any action in one sector will have an impact in one or both of the sectors.

    Rapid Urbanisation’s Impact on Water

    Asia’s needs for energy, food and water are especially acute as the region rapidly urbanises. Current energy consumption trends suggest that projected energy demand and supply in Asia can almost double by 2030. To feed the projected additional one billion more people in Asia, food production must make gains in productivity.

    For water, an MIT research on economic and population growth and climate change for the next 35 years projected that more than one billion people in Asia may become water-stressed compared to today.

    Efficiency gains in the ‘food’ link of the nexus can influence the outcome of this challenge. Currently, 90% of the world’s total production and consumption of rice is located in Asia. Developing more water and energy efficient agricultural techniques for rice is a key entry point to address the nexus challenge.

    Advances in biotechnology and water-conservation agricultural techniques are promising because they use considerably less energy and water resources required by traditional agriculture.

    However, public sector investment and research in the agricultural sector have been waning in the past few decades and prioritised below development. As the food-energy-water nexus becomes the forefront of the resource scarcity debate, the agriculture sector can no longer be ignored.

    Water for Agriculture

    Rice is the world’s largest irrigated cereal, covering 29% of the total irrigated crop area and almost half of the irrigated cereals area. Research into making rice production more water-efficient yet productive has yielded promising results. IRRI, the International Rice Research Institute, has conducted research into more water conservative agricultural techniques with rice paddies.

    One example is the Alternative Wetting and Drying (AWD) method; Irrigation water is applied a few days after the disappearance of water so the field gets routinely flooded and non-flooded rather than continuously flooded.

    The University of California Davis this year analysed 56 studies on AWD. It discovered that overall, the farms who implemented AWD experienced a small yield reduction of 5.4% with a water usage reduction of 23.4%. The findings highlighted the potential of AWD to reduce water inputs with rice without jeopardising yields.

    Energy for Agriculture

    The energy needs for food production are expected to rise to meet growing food demand in Asia. As agriculture becomes more productive and industrialised, the input needs for fossil fuels increase along the value chain.

    Developing countries use less than half of the energy input for agriculture compared to industrialised countries. To meet growing food demand around the world, agriculture needs to become more ‘energy-smart’ in developing countries, while still making significant gains in productivity.

    Impact assessment studies on biotechnology crops by Brookes and Barfoot demonstrate the potential for these technologies to increase productivity while using minimal energy. Its tracking of different biotech crops from 1996-2014 found that the adoption of biotechnology allowed farmers to increase their yields while using no-till and/or reduced till farming and less herbicides and insecticides use.

    As tractor fuel usage for tilling is reduced, soil quality is enhanced and more carbon remains in the soil. Based on savings arising from the rapid adoption of reduced tillage and no tillage bio-technology crop farming systems in North and South America, an extra 6707 million kg of soil carbon is estimated to have been saved in 2012. This is equivalent to taking 10.9 million cars off the road for one year.

    Way Forward for Asia

    In ASEAN, there have been diminished investments in public sector agricultural research and development over the years as development in other areas took priority. There has been, however, recognition that technological change can no longer be advanced by the public sector alone. Currently half of the agricultural R&D comes from the government in ASEAN and for some countries like Malaysia and Myanmar it’s all of it.

    Figures from the International Food Policy Research Institute (IFPRI) and the Asia Pacific Association of Agricultural Research Institutions (APAARI) demonstrate that agricultural R&D spending has been either stagnating or dropping from 1996 to 2008. Incentivising private sector investment can fill that gap.

    Given the scale and urgency of these challenges, a mix of traditional and innovative private sector incentives is needed. The Asian Development Bank (ADB) 2013 Report on food security provided a few traditional recommendations. Intellectual property rights, trade and foreign investment liberalisation, advance purchase rewards and rewards are a few mechanisms that the public sector can use.

    G20 Recommendation

    For a more innovative approach, the G20 summit in 2010 launched the idea of “pull mechanisms.” Rather than “push” mechanisms that strengthen the supply of research, this type strengthens demand by fostering markets for innovations to “pull” or draw private investors. Since then, AgResults, a US$110 million multilateral initiative, has launched a few pilots and initial results are promising. For instance, in Kenya, post-harvest grain losses in the developing world led to lowered food insecurity rates for smallholder farmers.

    AgResults addressed this by creating a competition to provide economic incentives for companies to design and sell on-farm storage devices for smallholder farmers. Companies that sold the greatest amount of storage capacity received the largest proportion of the prize. In the first year, the companies sold 113,000 on-farm storage devices.

    The competition encouraged companies to compete and create a new market that did not exist before and provided smallholders with a wider range of options. The key to address the nexus challenge in Asia is to focus on future innovative “pull mechanisms” and traditional private sector incentives on more energy and water efficient agri-technologies for rice.

    About the Author

    Stella Liu is a visiting US Fulbright Research Fellow at the Centre for Non-Traditional Security Studies (NTS Centre), S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), Singapore.

    Categories: RSIS Commentary Series / Country and Region Studies / Non-Traditional Security

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info