Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Social Cohesion Research Programme (SCRP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Other Research
Future Issues and Technology Cluster
Research@RSIS
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Outreach
Global Networks
About Global Networks
RSIS Alumni
Executive Education
About Executive Education
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
International Programmes
About International Programmes
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Conference on Cohesive Societies (ICCS)
International Strategy Forum-Asia (ISF-Asia)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
RSIS Commentary Series
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
Future Issues
IDSS Papers
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
Glossary of Abbreviations
Policy-relevant Articles Given RSIS Award
RSIS Publications for the Year
External Publications for the Year
Media
Cohesive Societies
Sustainable Security
Other Resource Pages
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
Contact Us
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National SecurityInstitute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Social Cohesion Research Programme (SCRP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Other ResearchFuture Issues and Technology ClusterResearch@RSISScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to ApplyFinancial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Outreach
      Global NetworksAbout Global NetworksRSIS Alumni
      Executive EducationAbout Executive EducationSRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
      International ProgrammesAbout International ProgrammesAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)International Conference on Cohesive Societies (ICCS)International Strategy Forum-Asia (ISF-Asia)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersRSIS Commentary SeriesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsFuture IssuesIDSS PapersInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking Papers
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-Eds
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS AwardRSIS Publications for the YearExternal Publications for the Year
  • Media
      Cohesive SocietiesSustainable SecurityOther Resource PagesNews ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
  • Contact Us
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      rsissg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • CO17229 | Humanitarian Technology: Balancing Protection with Flexibility
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • RSIS Commentary Series
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • Future Issues
    • IDSS Papers
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers

    CO17229 | Humanitarian Technology: Balancing Protection with Flexibility
    Martin Searle

    05 December 2017

    download pdf

    Synopsis

    New technologies present regulatory questions. This is no less true of technologies deployed in humanitarian settings. But disaster contexts raise unique regulatory challenges. Addressing them requires balancing competing imperatives while maintaining the flexibility that is crucial to emergency response.

    Commentary

    IN NEPAL, at the time of the twin earthquakes in 2015, there were no local laws governing the use of Unmanned Aerial Vehicles (UAVs). Concerns quickly arose about their responsible deployment in the disaster response. Despite positive NGO communication about their use for identifying resources and survivors, the Nepali authorities ultimately placed severe ad hoc restrictions on UAVs.

    This followed fears that they were flying too close to security installations and historical sites, and posed a risk to approaching aircraft. Those regulations included restricting flying time to 15 minutes and travelling no further than 300 metres from the pilot, and introduced no-fly zones over houses. These significantly undermined the realisation of UAVs’ potential.

    Safety Regulations Ahead of Deployment

    UAVs are not the only new technology being trialled for humanitarian purposes that raise regulatory questions. Additive manufacturing – also known as 3D printing – has been used to create oxygen splitters, medical waste containers, and even customised prosthetic limbs. Both of these sectors – medical and airspace – are stringently regulated by states for obvious reasons of public safety and security.

    For these and other new technologies to contribute to disaster response to their full potential, any regulatory questions relating to their use must be identified and clarified ahead of their deployment.

    Several examples of regulatory codes already exist. Most countries have instituted quality control regulations for medical paraphernalia, but need to clarify how they intend to apply this to additive manufacturing of such items. For UAVs, two prominent examples are the NATO Unmanned Aircraft Systems Airworthiness standards, and the European Aviation Safety Agency Policy Statement on Airworthiness Certification of Unmanned Aircraft Systems.

    The UAViators Code of Conduct – produced by a community of private UAV users interested in the use of UAVs in disaster response – provides an excellent baseline for policy-makers considering the conduct of UAV operators.

    Risk of Over-regulation

    Efforts at regulation have faced two significant challenges. First, there is a tendency to use different classification criteria in establishing rules. This complicates compliance, especially for international organisations seeking to deploy assets in different jurisdictions. A standardised classification system would speed technologies’ entry into the country and ultimately their deployment in the field.

    Second, in places where rules already exist, there is a reflex to over-regulate and create unnecessary burden. The Nepal earthquake example given above illustrates this well, but it also appears in more established UAV regulatory environments, like the US. Airspace considered sensitive for UAVs, such as around military installations or critical infrastructure, needs to be defined ahead of any disaster, and appropriate balances struck between keeping them secure and properly facilitating disaster response.

    Similarly, the level of customisability allowed by additive manufacturing (3D printing), which is one of its major advantages in disaster settings, makes regulating quality assurance complicated. Without clarity, private sector companies are reportedly reluctant to use the technology in their own work, a hesitation that could equally encumber disaster responders.

    Maintaining Disaster Response Flexibility

    Any regulation must bear in mind the need to maintain flexibility. Past experience demonstrates that this is critical for realising the potential of new technologies. Volunteer and technical communities designed and produced far more innovations in the aftermath of the 2010 earthquake in Haiti than aid agencies were able to handle.

    One key lesson learned was the need for a design cycle capable of fostering the operational flexibility required to incorporate new ideas into programming during a disaster response. The high pressure environment and need for quick decision-making already make it difficult to achieve that flexibility, and technology regulation could complicate it further if not done in a way cognizant of this competing imperative.

    The pragmatic importance, and the moral difficulties, of this flexibility are exemplified by the additive manufacture of umbilical cord clamps during that same disaster in the Haitian capital, Port-au-Prince. Aid workers were acutely aware that the conditions in which they were manufacturing the clamps did not match the level of sterility usually required in the production of these instruments.

    However, in the absence of their clips, medical workers are reported to have been using string, and even shoelaces, to tie the freshly cut umbilical cords of new-borns, as there was nothing else available. The 3D-printed clips were an unquestionable improvement on this and were thus considered “good enough” in the circumstances despite their failure to meet recognised hygiene standards.

    When is “Good Enough” Good Enough?

    This notion of “good enough” can be critical in the circumstances of urgency and material scarcity that characterise a humanitarian disaster, and regulation must be flexible enough to allow space for it. However, “good enough” will always be a subjective judgement and regulation must be robust enough to mitigate this potential risk.

    Consider the collection of data through UAVs, or mobile phone records, or medical information, and the implications on privacy: when are privacy protections “good enough?” These balances are evidently extremely difficult to strike, in particular when they are being made by humanitarian workers who themselves will not bear the consequences of “unhygienic” medical instruments or inadequate privacy protocols.

    The importance of these questions for the successful and ethical realisation of new technologies’ potential in humanitarian settings is plain. Governments, following adequate consultation with humanitarian and other relevant stakeholders, likely including military, aviation, medical and civil society representatives, need to be able to provide clarity to humanitarian responders working within their respective jurisdictions.

    About the Author

    Martin Searle is an Associate Research Fellow with the Humanitarian Assistance and Disaster Relief (HADR) Programme, Centre for Non-Traditional Security Studies (NTS Centre) at the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), in Singapore. This commentary is timed with the Regional Consultative Group meeting on humanitarian coordination on 5-6 December 2017, Singapore.
    https://www.rsis.edu.sg/rsis-publication/nts/humanitarian-technology-new-innovations-familiar-challenges-and-difficult-balances/#.WiY824aWaM8

    Categories: RSIS Commentary Series / Non-Traditional Security / Country and Region Studies / Global / Southeast Asia and ASEAN
    comments powered by Disqus

    Synopsis

    New technologies present regulatory questions. This is no less true of technologies deployed in humanitarian settings. But disaster contexts raise unique regulatory challenges. Addressing them requires balancing competing imperatives while maintaining the flexibility that is crucial to emergency response.

    Commentary

    IN NEPAL, at the time of the twin earthquakes in 2015, there were no local laws governing the use of Unmanned Aerial Vehicles (UAVs). Concerns quickly arose about their responsible deployment in the disaster response. Despite positive NGO communication about their use for identifying resources and survivors, the Nepali authorities ultimately placed severe ad hoc restrictions on UAVs.

    This followed fears that they were flying too close to security installations and historical sites, and posed a risk to approaching aircraft. Those regulations included restricting flying time to 15 minutes and travelling no further than 300 metres from the pilot, and introduced no-fly zones over houses. These significantly undermined the realisation of UAVs’ potential.

    Safety Regulations Ahead of Deployment

    UAVs are not the only new technology being trialled for humanitarian purposes that raise regulatory questions. Additive manufacturing – also known as 3D printing – has been used to create oxygen splitters, medical waste containers, and even customised prosthetic limbs. Both of these sectors – medical and airspace – are stringently regulated by states for obvious reasons of public safety and security.

    For these and other new technologies to contribute to disaster response to their full potential, any regulatory questions relating to their use must be identified and clarified ahead of their deployment.

    Several examples of regulatory codes already exist. Most countries have instituted quality control regulations for medical paraphernalia, but need to clarify how they intend to apply this to additive manufacturing of such items. For UAVs, two prominent examples are the NATO Unmanned Aircraft Systems Airworthiness standards, and the European Aviation Safety Agency Policy Statement on Airworthiness Certification of Unmanned Aircraft Systems.

    The UAViators Code of Conduct – produced by a community of private UAV users interested in the use of UAVs in disaster response – provides an excellent baseline for policy-makers considering the conduct of UAV operators.

    Risk of Over-regulation

    Efforts at regulation have faced two significant challenges. First, there is a tendency to use different classification criteria in establishing rules. This complicates compliance, especially for international organisations seeking to deploy assets in different jurisdictions. A standardised classification system would speed technologies’ entry into the country and ultimately their deployment in the field.

    Second, in places where rules already exist, there is a reflex to over-regulate and create unnecessary burden. The Nepal earthquake example given above illustrates this well, but it also appears in more established UAV regulatory environments, like the US. Airspace considered sensitive for UAVs, such as around military installations or critical infrastructure, needs to be defined ahead of any disaster, and appropriate balances struck between keeping them secure and properly facilitating disaster response.

    Similarly, the level of customisability allowed by additive manufacturing (3D printing), which is one of its major advantages in disaster settings, makes regulating quality assurance complicated. Without clarity, private sector companies are reportedly reluctant to use the technology in their own work, a hesitation that could equally encumber disaster responders.

    Maintaining Disaster Response Flexibility

    Any regulation must bear in mind the need to maintain flexibility. Past experience demonstrates that this is critical for realising the potential of new technologies. Volunteer and technical communities designed and produced far more innovations in the aftermath of the 2010 earthquake in Haiti than aid agencies were able to handle.

    One key lesson learned was the need for a design cycle capable of fostering the operational flexibility required to incorporate new ideas into programming during a disaster response. The high pressure environment and need for quick decision-making already make it difficult to achieve that flexibility, and technology regulation could complicate it further if not done in a way cognizant of this competing imperative.

    The pragmatic importance, and the moral difficulties, of this flexibility are exemplified by the additive manufacture of umbilical cord clamps during that same disaster in the Haitian capital, Port-au-Prince. Aid workers were acutely aware that the conditions in which they were manufacturing the clamps did not match the level of sterility usually required in the production of these instruments.

    However, in the absence of their clips, medical workers are reported to have been using string, and even shoelaces, to tie the freshly cut umbilical cords of new-borns, as there was nothing else available. The 3D-printed clips were an unquestionable improvement on this and were thus considered “good enough” in the circumstances despite their failure to meet recognised hygiene standards.

    When is “Good Enough” Good Enough?

    This notion of “good enough” can be critical in the circumstances of urgency and material scarcity that characterise a humanitarian disaster, and regulation must be flexible enough to allow space for it. However, “good enough” will always be a subjective judgement and regulation must be robust enough to mitigate this potential risk.

    Consider the collection of data through UAVs, or mobile phone records, or medical information, and the implications on privacy: when are privacy protections “good enough?” These balances are evidently extremely difficult to strike, in particular when they are being made by humanitarian workers who themselves will not bear the consequences of “unhygienic” medical instruments or inadequate privacy protocols.

    The importance of these questions for the successful and ethical realisation of new technologies’ potential in humanitarian settings is plain. Governments, following adequate consultation with humanitarian and other relevant stakeholders, likely including military, aviation, medical and civil society representatives, need to be able to provide clarity to humanitarian responders working within their respective jurisdictions.

    About the Author

    Martin Searle is an Associate Research Fellow with the Humanitarian Assistance and Disaster Relief (HADR) Programme, Centre for Non-Traditional Security Studies (NTS Centre) at the S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), in Singapore. This commentary is timed with the Regional Consultative Group meeting on humanitarian coordination on 5-6 December 2017, Singapore.
    https://www.rsis.edu.sg/rsis-publication/nts/humanitarian-technology-new-innovations-familiar-challenges-and-difficult-balances/#.WiY824aWaM8

    Categories: RSIS Commentary Series / Non-Traditional Security / Country and Region Studies

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    rsissg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info